Národní úložiště šedé literatury Nalezeno 15 záznamů.  1 - 10další  přejít na záznam: Hledání trvalo 0.00 vteřin. 
Computational Simulation of Mechanical Tests of Isolated Animal Cells
Bansod, Yogesh Deepak ; Kučera,, Ondřej (oponent) ; Florian, Zdeněk (oponent) ; Canadas, Patrick (oponent) ; Burša, Jiří (vedoucí práce)
A cell is complex biological system subjected to the myriad of extracellular mechanical stimuli. A deeper understanding of its mechanical behavior is important for the characterization of response in health and diseased conditions. Computational modeling can enhance the understanding of cell mechanics, which may contribute to establish structure-function relationships of different cell types in different states. To achieve this, two finite element (FE) bendo-tensegrity models of a cell in different states are proposed: a suspended cell model elucidating the cell’s response to global mechanical loads, such as elongation and compression and an adherent cell model explicating the cell’s response to local mechanical load, such as indentation using atomic force microscopy (AFM). They keep the central principles of tensegrity such as prestress and interplay between components, but the elements are free to move independently of each other. Implementing the recently proposed bendo-tensegrity concept, these models take into account flexural (buckling) as well as tensional behavior of microtubules (MTs) and also incorporate the waviness of intermediate filaments (IFs). The models assume that individual cytoskeletal components can change form and organization without collapsing the entire cell structure when they are removed and thus, can evaluate the mechanical contribution of individual cytoskeletal components to the cell mechanics. The suspended cell model mimics realistically the force-elongation response during cell stretching and the force-deformation response during cell compression, and both responses illustrate a non-linear increase in stiffness with mechanical loads. The simulation results demonstrate that actin filaments (AFs) and MTs both play a crucial role in defining the tensile response of cell, whereas AFs contribute substantially to the compressive response of cell. For adherent cell model, the force-indentation responses at two distinct locations are in accordance with the non-linear behavior of AFM experimental data. The simulation results exhibit that the indentation site dominates the cell behavior and for cell rigidity actin cortex (AC), MTs, and cytoplasm are essential. The proposed models provide valuable insights into the interdependence of cellular mechanical properties, the mechanical role of cytoskeletal components individually and synergistically, and the nucleus deformation under different mechanical loading conditions. Therefore, this thesis contributes to the better understanding of the cytoskeletal mechanics, responsible for cell behavior, which in turn may aid in investigation of various pathological conditions like cancer and vascular diseases.
Computational Simulation of Mechanical Behaviour of Endothelial Cells
Jakka, Veera Venkata Satya ; Gumulec, Jaromír (oponent) ; Majer, Zdeněk (oponent) ; Matsumoto,, Takeo (oponent) ; Burša, Jiří (vedoucí práce)
Atherogenesis is the leading cause of death in the developed world, and is putting considerable monetary pressure on health systems the world over. The prevailing haemodynamic environment together with the local concentration of mechanical load play an important role in the focal nature of atherosclerosis to very specific regions of the human vasculature. In blood vessels, the endothelium, a thin monolayer of cells, lies at the interface between the bloodstream and the vascular wall. Dysfunction of endothelial cells is involved in major pathologies. For instance, atherosclerosis develops when the barrier and anti-inflammatory functions of the endothelium are impaired, allowing accumulation of cholesterol and other materials in the arterial wall. In cancer, a key step in the growth of a tumour is its vascularization, a process driven by endothelial cell migration. The mechanical environment of endothelial cells plays a key role in their function and dysfunction. Computational modelling can enhance the understanding of cell mechanics, which may contribute to establishing structure-function relationships of different cell types in different states. To achieve this, finite element (FE) models of endothelium cell are proposed in this thesis, i.e. a suspended cell model and adherent model elucidating the cell’s response to global mechanical loads, such as tension and compression, as well as a model of the cell with its natural shape inside the endothelial layer. They keep the central principles of tensegrity such as prestress and interplay between components, but the elements are free to rearrange independently of each other. Implementing the recently proposed bendo-tensegrity concept, these models consider flexural (buckling) as well as tensional/compressional behaviour of microtubules (MTs) and also incorporate the waviness of intermediate filaments (IFs). The models assume that the individual cytoskeletal components can change their form and organization without collapsing the entire cell structure when they are removed and thus, they enable us to evaluate the mechanical contribution of individual cytoskeletal components to the cell mechanics. The proposed models are validated with experimental results by comparison of their force-displacement curves. The suspended cell model mimics realistically the force-deformation responses during cell stretching and compression, and both responses illustrate a non-linear increase in stiffness with mechanical loads. The compression test of flat endothelial cell is simulated and compared with adherent cell test and its simulation. Then, the shear test of flat cell is simulated to assess its shear behaviour occurring in vascular wall due to blood flow. Then investigated the mechanical response of the flat cell within the endothelium layer under physiological conditions in arterial wall. Later, investigated the cell response in debonding during cyclic stretches using 3-D finite element simulations. The proposed models provide valuable insights into the interdependence of cellular mechanical properties, the mechanical role of cytoskeletal components in endothelial cells individually and synergistically, and the nucleus deformation under different mechanical loading conditions. Therefore, the thesis should contribute to the better understanding of the cytoskeletal mechanics, responsible for endothelial cell behaviour, which in turn may aid in investigation of various pathological conditions related to
Finite element modelling of elastic wave propagation in heterogeneous media
Kolman, Radek ; Cho, S.S. ; González, J. A. ; Park, K.C.
In this contribution, we present an explicit scheme based on local time stepping respecting local wave speed and local stability limit for each finite element. The work aim is to suppress the spurious oscillations in wave propagation tasks in heterogeneous bars.
Computational Simulation of Mechanical Tests of Isolated Animal Cells
Bansod, Yogesh Deepak ; Kučera,, Ondřej (oponent) ; Florian, Zdeněk (oponent) ; Canadas, Patrick (oponent) ; Burša, Jiří (vedoucí práce)
A cell is complex biological system subjected to the myriad of extracellular mechanical stimuli. A deeper understanding of its mechanical behavior is important for the characterization of response in health and diseased conditions. Computational modeling can enhance the understanding of cell mechanics, which may contribute to establish structure-function relationships of different cell types in different states. To achieve this, two finite element (FE) bendo-tensegrity models of a cell in different states are proposed: a suspended cell model elucidating the cell’s response to global mechanical loads, such as elongation and compression and an adherent cell model explicating the cell’s response to local mechanical load, such as indentation using atomic force microscopy (AFM). They keep the central principles of tensegrity such as prestress and interplay between components, but the elements are free to move independently of each other. Implementing the recently proposed bendo-tensegrity concept, these models take into account flexural (buckling) as well as tensional behavior of microtubules (MTs) and also incorporate the waviness of intermediate filaments (IFs). The models assume that individual cytoskeletal components can change form and organization without collapsing the entire cell structure when they are removed and thus, can evaluate the mechanical contribution of individual cytoskeletal components to the cell mechanics. The suspended cell model mimics realistically the force-elongation response during cell stretching and the force-deformation response during cell compression, and both responses illustrate a non-linear increase in stiffness with mechanical loads. The simulation results demonstrate that actin filaments (AFs) and MTs both play a crucial role in defining the tensile response of cell, whereas AFs contribute substantially to the compressive response of cell. For adherent cell model, the force-indentation responses at two distinct locations are in accordance with the non-linear behavior of AFM experimental data. The simulation results exhibit that the indentation site dominates the cell behavior and for cell rigidity actin cortex (AC), MTs, and cytoplasm are essential. The proposed models provide valuable insights into the interdependence of cellular mechanical properties, the mechanical role of cytoskeletal components individually and synergistically, and the nucleus deformation under different mechanical loading conditions. Therefore, this thesis contributes to the better understanding of the cytoskeletal mechanics, responsible for cell behavior, which in turn may aid in investigation of various pathological conditions like cancer and vascular diseases.
Youngův modul na rozhraní elastického a elastoplastického materiálu
Kocmanová, Lenka ; Haušild, P. ; Materna, A. ; Matějíček, Jiří
Příspěvek je zaměřený na určování Youngova modulu na ostrém rozhraní mezi dvěma materiály, kde jeden materiál je elastický a druhý elasto-plastický. K určení Youngova modulu byl použit 3D numerický model nanoindentace s kuželovým indentorem. Rozhraní mezi materiály je rovina s normálou kolmou ke směru vtisku. Cílem je simulovat spojení kovových a keramických materiálů.\nHodnoty Youngova modulu v závislosti na normované vzdálenosti od rozhraní jsou aproximovány inverzní beta distribucí a je určena závislost parametrů inverzní beta distribuce na velikost oblasti ovlivněné druhou fází. \n
Hodnocení stárnutí heterogenního svaru na základě instrumentované indentace
Dlouhý, Ivo ; Hadraba, Hynek ; Stodola, M. ; Čupera, Pavel ; Al Khaddour, Samer
Zpráva obsahuje soubor podkladů k odladění výpočtů tahových zatěžovacích křivek z indentačních křivek jednak pro vybrané referenční materiály a pro vlastní heterogenní svar. Podstatná část souborů byla předána v podobě tabulkových dat reprezentujících jednak indentační křivky pro různá zatížení indentoru a jednak tahové zatěžovací křivky stejných mikrostrukturních stavů získané při pokojové teplotě. Zpráva je orientována na vyhodnocení vlivu simulovaného stárnutí na lomové chování podnávarové oblasti a empirický rozbor indentačních křivek získaných z rozhraní oceli 22K a návaru.
Podklady k výpočtům tahových zatěžovacích křivek z indentačních křivek a hodnocení stárnutí heterogenního svaru
Dlouhý, Ivo ; Hadraba, Hynek ; Chlup, Zdeněk ; Čupera, Pavel ; Al Khaddour, Samer
Zpráva obsahuje soubor podkladů k odladění výpočtů tahových zatěžovacích křivek z indexačních křivek. Podstatná část souboru byla předána v podobě tabulkových dat reprezentujících jednak indentační křivky pro různá zatížení s kuličkou a jednak tahové zatěžovací křivky získané při pokojové teplotě.
On the X-ray micro-tomography measurements of biological samples under compressive loading
Fíla, T. ; Kumpová, Ivana ; Zlámal, Petr ; Kytýř, Daniel ; Koudelka_ml., Petr ; Doktor, Tomáš ; Jiroušek, Ondřej
In this paper, compact loading device for micro-CT measurements under applied load was used in a series of instrumented compressive test of bone sample. Tested bone samples were loaded in several deformation steps and micro-CT scanning was carried out in each step. Reconstructed three-dimensional data of intact bone sample were used to develop 3D model of the specimen. Data from each deformation step were processed by DVC method for identification of displacement and strain fields and thus for evaluation of deformation response of human trabecular bone sample.
On the modelling of compressive response of closed-cell aluminium foams under high-strain rate loading
Koudelka_ml., P. ; Zlámal, Petr ; Fíla, Tomáš
Porous metals and particularly aluminium foams are attractive materials for crash applications where constructional elements have to be able to absorb considerable amount of deformation energy while having as low weight as possible. Compressive behaviour for medium impact velocities can be experimentally assessed from a series of droptower impact tests instrumented with accelerometer and high-speed camera. However to predict such behaviour a proper modelling scheme has to be developed. In this paper droptower impact tests of Alporas aluminium foam were used for development of a material model for explicit finite element simulations of high-strain rate deformation process using LS-DYNA simulation environment. From the material models available low density foam, Fu-Chang’s foam, crushable foam and modified crushable foam models were selected for simulations using smoothed-particle hydrodynamics and solid formulations respectively. Numerical simulations were performed in order to assess constitutive parameters of these models and identify material model describing deformation behaviour of Alporas with the best accuracy.
Použití inverzní MKP analýzy ke stanovení materiálové křivky na základě indentační zkoušky
Brumek, J. ; Strnadel, B. ; Dlouhý, Ivo
Modelování instrumentované indentační zkoušky bylo zaměřeno na predikci deformačního zpevňování uhlíkových ocelí. Indentační zkoušky byly realizovány na několika vybraných ocelích. Na základě modelování indentace kuličkou a porovnání vypočtené a naměřené indentační křivky byl model upraven a posléze použit k inverznímu(iteračnímu) výpočtu vybraných materiálových parametrů tahové zkoušky. Získané výsledky byly v dobré shodě s experimenty.

Národní úložiště šedé literatury : Nalezeno 15 záznamů.   1 - 10další  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.